
Hi Phreaks.

This is a somewhat reduced copy of the original website dealing with the A1018s Handy …

http://www.spletomat.com/tech/s_files/A1018s

Hope you find it as interesting as I do.

Ullasmann

The A1018s' architecture is almost identical to GA628. The ports are the same, only shifted up by

0x0800. The obvious advantage - a graphic LCD - greatly expands the phone's usage potential.

Phone specs:

• AVR RISC processor @ 13MHz

• 1Mb flash (512x16)
• 32kb on chip RAM (no RAM chips on PCB)
• 8kb EEPROM

• 33x101 pixels graphic LCD

How to bootstrap the phone:

• power up the phone with +5V applied to test input
• phone will respond with "U" at 9600 bps

• send "0B" within 1 second (else phone turns on)
• phone will respond with "R"
• send two bytes 00 03

• phone will respond with two bytes 00 02
• send 64 bytes 00

• phone will respond with three bytes
• send another 64 bytes 00
• phone will send "S" after about half a second

• send the binary file to the phone

Uploader will do all this for you

To see inside the phone, visit www.inside-gsm.com.

http://www.spletomat.com/tech/s_files/A1018s
http://web.archive.org/web/20021118031215/http://www.spletomat.com/tech/a1018_tools
http://web.archive.org/web/20021118031215/http://www.inside-gsm.com/

Please remember that everything here may not be 100% true and a lot is unknown. There is no
datasheet for the phone - everything was researched by experimenting.

1. CPU

The CPU is a custom ATMEL AVR. MUL instructions are unsupported :(and only basic LPM: r0 = (Z) and
ELPM: r0 = (RAMPZ:Z) are implemented. Stack is post decremental - it points to the empty location
below the last pushed value. The PC is 3 bytes wide. If you want to see where you are:

 rcall _nexti
_nexti:
 pop PChigh
 pop PCmiddle
 pop PClow

Onboard WatchDog is not present making the WDR instruction useless.

There's a couple of anomalies in the CPU. Instead of EIMSK and EICR registers there are RAMPX and
RAMPY in their place. You can therefore address any memory location using X and Y index registers as
well. Furthermore, the RAMPZ register is a bit special. When you change it, the load direct and store
direct (lds, sts) instructions are also affected. XDIV register is actually EIND - the CPU supports EICALL.

2. Memory organization

Data memory:

RAMPZ
(X,Y)

Range What

0000-005F AVR registers and I/O ports

0060-00FF nothing. No internal RAM!

0100-01FF hardware I/O ports

0200-02FF
...
0F00-0FFF

14 mirrors of 0100-01FF

1000-2FFF 8kb RAM

3000-4FFF
5000-6FFF
7000-7FFF

2.5 mirrors of 1000-2FFF (only half at 7000-7FFF)

00

8000-FFFF 32kb RAM

0000-1FFF
...
6000-7FFF

4 mirrors of 8kb RAM
01,02,03

8000-FFFF mirror of 32kb RAM

04..7F 0000-3FFF 16kb RAM, mirrored on all above addresses and through to RAMPZ 7F

80..8F 0000-FFFF flash mapped to data memory (16 x 64kb = 1Mb)

90..9F
A0..AF
B0..BF

0000-FFFF 3 mirrors of 80..8F

C0..FF 0000-FFFF
a single byte mapped to the entire address space. It's writeable, but I dunno
whether it's simple RAM or perhaps a register of some peripheral.

Program memory:

The available RAM is also mapped in the program memory - otherwise bootstraping wouldn't be possible.
Bootstraping code to 4000 and executing the above code example produced program memory address
204000.

The AVR uses the Harvard architecture concept - program memory and data memory are separated.
Furthermore, program memory uses word addressing, whereas data memory uses standard byte
addressing. For me, it took some getting used to and to make it simpler I wrote the following macro:

 .macro ldz
 ldi ZH,high(2*@0)
 ldi ZL,low(2*@0)
 .endmacro

It is used to load the Z index register with the right value when you want to point to some constant data

you've defined in the program memory. Consider this example:

 .cseg
 .org 0
strData1: .db "somedata"
strData2: .db "moredata"

Because of the word addressing, value of strData2 is 4 instead of expected 8. That's why I couldn't
define strData1 as "some data" (with a space), since that would make strData2 4.5

 ldz strData2
 lpm

Loading Z correctly is made simple by executing the macro. The following lpm instruction then correctly

loads "m" into r0. Identical macros ldx and ldy are defined as well (macros.inc).

3. LCD

Drawing on the LCD is ultra simple. It's identifier on the i2c bus is 0x70, after follows the line identifier,
the x offset and finally 101 bytes of display data. Each byte defines 8 vertical pixels where LSB is the top
and MSB the bottom pixel. The following transfer:
S 70 09 00 01 01 01 01 01 01 01 P
would draw a line on top of the LCD. The identifiers for lines 1,2,3,4,5 are 0x09,0x29,0x49,0x69 and

0x89. There is also another type of LCD used in the phone - for details on how it works, examine the low
level procedures.

You can try drawing with LCD tester.

4. Other hardware

All other hardware is almost identical to GA628 so I won't describe it again.

This is a quick tutorial to help you start coding asap. I expect you've read the CPU and Memory
organization already - the minimum what you need to know is there. There are also four other things you
need: ATMEL's AVR studio, low level procedures, the skeleton code and the flasher. Here we go! =)

1. Skeleton code

The skeleton code you downloaded looks like this. Fix my h:\a1018\... path to your own directory
preference.

 .include "h:\a1018\lowlvl\macros.inc"
 .cseg
 .org 0x0

 jmp reset

 .include "h:\a1018\lowlvl\ints.asm"
 .include "h:\a1018\lowlvl\lowlvl.asm"

http://web.archive.org/web/20021122201219/http://www.spletomat.com/tech/s_files/A1018s/a1018lcdtester.zip
http://web.archive.org/web/20021122194656/http://www.spletomat.com/tech/a1018_hw
http://web.archive.org/web/20021122194656/http://www.spletomat.com/tech/a1018_hw
http://web.archive.org/web/20021122194656/http://www.atmel.com/
http://web.archive.org/web/20021122194656/http://www.spletomat.com/tech/a1018_lowlvl
http://web.archive.org/web/20021122194656/http://www.spletomat.com/tech/a1018_lowlvl
http://web.archive.org/web/20021122194656/http://www.spletomat.com/tech/a1018_tools

 .db "MAIN PROGRAM START"

reset:
 clr r0
 out RAMPZ,r0
 out RAMPX,r0
 out RAMPY,r0

 ldi r16,0xff
 out SPH,r16
 out SPL,r16 ; SP = 0xffff

 rcall phInit
 rcall intInit

 sei ; auto watchdog reset

main:
 ; Your code goes here
 rjmp PC ; endless loop

The following examples are code inserted in this skeleton outline.

2. Keyboard example

First, we call keyGetKey which returns a byte identifier of the currently pressed key in r16. Next, the
keyDecode function translates this identifier into a more intuitive character representing the key
(1,2,3,4,5,6,7,8,9,0,Y,N,C,L,R,* and #) and returns r16. Finally we simply compare r16 to an immediate
value and branch somewhere if they match.

main:
 rcall keyGetKey
 rcall keyDecode
 cpi r16,'Y'
 breq _yespressed

 rjmp PC ; endless loop

You can omit the keyDecode procedure and compare the result of keyGetKey with the (cryptic) key
identifier. It happens to be 24 for Y. You can examine keyDecodeStr to get the rest of them. An
important thing to remember here is that when no key was pressed, keyDecode returns 0 whereas plain
keyGetKey returns 25.

3. Lights example

The lights example turns on the top green LED by setting the carry flag and calling ltGreen. The carry
flag is a parameter for light procedures - if set, the corresponding light is turned on, if cleared, the light
is turned off. Secondly we turn on the keyboard-LCD backlight and set its intensity to half.

main:
 sec ; sec = set carry flag
 rcall ltGreen ; clc = clear carry flag
 sec
 rcall ltBacklight
 ldi r16,0x80
 rcall ltSetIntensity

 rjmp PC ; endless loop

4. Sound example

main:
 ldi r16,1 ; lowest volume
 rcall bpSetVolume
 ldi r16,0x55 ; a nice annoying frequency
 rcall bpPlayTone

 rjmp PC ; endless loop

To turn off the "noise", either set volume or frequency to 0.

5. Serial communication example

5.1 Send example

Executing the following code would produce "Z=5A" on the receiving end.

main:
 ldi r16,'Z'
 rcall comOutChar
 ldi r16,'='
 rcall comOutChar
 ldi r16,'Z'
 rcall comOutHex

 rjmp PC ; endless loop

Note that comOut procedures first wait for the previous byte (if any) to be transmitted.

5.2 Get example

main:
 rcall comGetChar ; blocking
 cpi r16,'X'
 breq _xreceived

 rjmp PC ; endless loop

comGet procedures are blocking - they return when byte(s) were actually received. If you only need to
check the status of the in buffer, examine comGetChar to see how it's done.

5.3 Setting baudrate

main:
 ldi r16,96 ; 9600 baud
 rcall comSetBaud

 rjmp PC ; endless loop

comSetBaud does very little work - it translates the "more intuitive" number to the hardware understood
value and sets baud port. Valid values for r16 are:
48 for 4800
96 for 9600

19 for 19200
38 for 38400
57 for 57600
115 for 115200

6. LCD example

I reserved two memory buffers for LCD procedures. One is called lcdTextRam, the other lcdGraphicRam.
They're both defined in lowram.asm (low level procedures' RAM). lcdTextRam is 68 bytes long and if you
put some ASCII characters in it and call lcdUpdText, these characters will appear on the LCD. On the
other hand, lcdGraphicRam is 505 bytes long, calling lcdUpdGraphic will draw the pixels defined within it.

6.1 LCD text example

The following example copies a constant string from program memory (flash) to lcdTextRam using a
helper procedure and then draws the text. The helper procedure - lcdCopyTextStr - takes 3 parameters,
a pointer to the string in Z, the length of the string in r16 and the offset in lcdTextRam to copy to in r17.
Since the string is 68 characters long, the only valid offset is 0. If you used a shorter string - strShorter -
and put 17 to r17, ERICSSON would appear in the second line.

main:
 ldz strHello
 ldi r16,68 ; length of string
 ldi r17,0 ; offset to copy to
 rcall lcdCopyTextStr ; copy text string from program
 rcall lcdUpdText ; memory to lcdTextRam

 rjmp PC ; endless loop
| line 1 || line 2 || line 3 || line 4 |
strHello:
.db "HELLO WORLD "
strShorter:
.db "ERICSSON"

6.2 LCD graphic example - PutPixel

This example expects lcdGraphicRam to be uninitialized, so it calls lcdClrGraphic first. Next, we put a
single pixel in the top-leftmost corner of the LCD and call lcdUpdGraphic to update LCD with this change
in lcdGraphicRam.

main:
 rcall lcdClrGraphic
 ldi r16,0 ; x coordinate (0..100)
 ldi r17,0 ; y coordinate (0..32)
 sec ; put pixel, clc would clear it
 rcall lcdPutPixel
 rcall lcdUpdGraphic

 rjmp PC ; endless loop

6.3 LCD graphic example - constant picture data

You can also define an entire screen of pixels in flash, copy them to lcdGraphicRam using lcdCopyGraphic
and draw it. There's a simple tool I wrote called BMPconverter that will produce an array of values like
you see below, from a 33x101 1 bit bitmap.

main:
 ldz graEricLogo
 rcall lcdCopyGraphic

http://web.archive.org/web/20021122194656/http://www.spletomat.com/tech/a1018_tools

 rcall lcdUpdGraphic

 rjmp PC ; endless loop

graEricLogo:
.dw 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000
.dw 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000
.dw 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000
.dw 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000
.dw 0x0000,0x8000,0x8080,0x0000,0x0000,0x0000,0x0000
.dw 0x0000,0x0000,0xF0F0,0x30F0,0x3030,0x0030,0xF0F0,0x30F0,0xF030,0xE0F0,0xF000
.dw 0xF0F0,0x8000,0xE0C0,0x70F0,0x3030,0x3030,0xE000,0xF0F0,0x3030,0x3030,0xE000
.dw 0xF0F0,0x3030,0x3030,0xC000,0xF0E0,0x3070,0x7030,0xE0F0,0x00C0,0xF0F0,0xF0F0
.dw 0x80E0,0xF000,0xF0F0,0x0000,0x0000,0x0000,0x0000,0x1800,0x3C3C,0x9E3C,0x9E9E
.dw 0xCFCF,0xE7CF,0xE7E7,0x00C3,0x0000,0x0000,0x0000
.dw 0x0000,0x0000,0x3F3F,0x333F,0x3333,0x0033,0x3F3F,0x033F,0x1F03,0x383F,0x3F00
.dw 0x3F3F,0x0700,0x1F0F,0x383C,0x3030,0x3030,0x3000,0x3331,0x3F33,0x1E3F,0x3000
.dw 0x3331,0x3F33,0x1E3F,0x0F00,0x3F1F,0x3038,0x3830,0x1F3F,0x000F,0x3F3F,0x003F
.dw 0x0F03,0x3F3E,0x3F3F,0x0000,0x0000,0x0000,0x0000,0x8600,0xCFCF,0xE7CF,0xE7E7
.dw 0xF3F3,0x79F3,0x7979,0x0030,0x0000,0x0000,0x0000
.dw 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000
.dw 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000
.dw 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000
.dw 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0100,0x0303,0x0103,0x0101
.dw 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000
.dw 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000
.dw 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000
.dw 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000
.dw 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000
.dw 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000

Note that there's an extra 0 at the end of each 101 byte "line". That's because of the word addressing -

you can't define an odd number of bytes.

7. EEPROM example

Both EEPROM routines eeRead and eeWrite use register pair X as EEPROM address parameter. Since
EEPROM is 8k bytes, values 0..1FFF are valid.

7.1 EEPROM reading

.equ numEntries =$10FF

main:
 ldi XH,high(numEntries)
 ldi XL,low(numEntries)
 rcall eeRead
 cpi r16,30
 brlo _storeentry ; less than 30 entries

 rjmp PC ; endless loop

The example demonstrates how you could define an address for a value in EEPROM and retrieve it using
eeRead.

7.2 EEPROM writing

main:
 ldi XH,0x10
 ldi XL,0xff
 ldi r16,30
 rcall eeWrite

 rjmp PC ; endless loop

Here we overwrite our hypothetical value numEntries from the previous example with 30 using eeWrite.

8. SIM card communication

Like the LCD, there's a buffer defined in lowram.asm for SIM comm called simBuf. It's 255 bytes long
and gets filled by info from the SIM card when you call simRead. The number of bytes in the buffer is
stored in a memory variable called simBufSize located just after the buffer. I expect you're familliar with
SIM card commands and file organization.

8.1 Resetting the card

SIM cards come in two flavours: inverted ISO and straight ISO. Before doing a reset, specify which card
is in the slot by calling either simInvISO or simStrISO.

main:
 rcall simInvISO ; we have an inverted ISO card
 rcall simATR
 lds r16,simBufSize
 rcall comOutHex

 rjmp PC ; endless loop

simATR powers up the card, resets it and calls simRead immediately after, in effect filling simBuf with
card's ATR message. The example above resets the card and sends the number of bytes in card's ATR
message across the serial interface.

8.2 SIM select file example

Note that this example expects you've already selected card type and reset the card (i.e. what we did
before).

main:
 ldi r16,0xa0 ; CLA - GSM SIM card
 rcall simSend
 ldi r16,0xa4 ; INS - SELECT FILE
 rcall simSend
 ldi r16,0x00 ; P1
 rcall simSend
 ldi r16,0x00 ; P2
 rcall simSend
 ldi r16,0x02 ; P3
 rcall simSend
 rcall simRead

 rjmp PC ; endless loop

The example shows the beginning of a select file command. After simRead, if everything was ok,

simBufSize should equal 1 and value A4 should be in simBuf as the card acknowledged select file
command.

This concludes the tutorial. I haven't covered all procedures in lowlvl.asm - you can find their
"prototypes" at the beginning of the file. I believe they are straightforward. You can always find more
example code on this site - like Tiny Arkanoid game. If there's something you need help with, ask in
the developer forum. And finally, I would love to hear about anything interesting you code for the phone,

so be sure to let me know. Good luck!

http://web.archive.org/web/20021122194656/http://www.spletomat.com/tech/a1018_prod_games
http://web.archive.org/web/20021122194656/http://www.spletomat.com/tech/a1018_devfor

The chatboard is a silly little thing that virtually presses keys on A1018s using AT commands.

Here's how it works:

• First the chatboard keeps sending AT until it receives OK from the phone.
• Secondly it sends AT+CGMM and AT+CGMR requesting model and revision information

• Finally keys are pressed utilizing the AT+CKPD="X" command where X is one of the following:

X key

0..9 numeric keys

* < > hash, asterisk, left and right

s YES

e NO

c CLR

Characters are obtained simply by pressing the corresponding numeric key required number of times.

Several keys can be pressed with one command like this: AT+CKPD="12345"

The chatboard makes use of the phone's logic level reference pin making it hardware compatible with
GA628, however the phone's firmware doesn't support it.

I wrote an emulator for the chatboard for those of you who would like to write SMS messages quickly.

Thanks to Ciril for dismembering his chatboard and letting me have it for research. =)

http://web.archive.org/web/20021122200807/http://www.spletomat.com/tech/a1018_prod_cbemu

